Automatic black and white film colorization using texture features and artificial neural networks
نویسندگان
چکیده
This study represents an innovative automatic method for black and white films colorization using texture features and a multilayer perceptron artificial neural network. In the proposed method, efforts are made to remove human interference in the process of colorization and replace it with an artificial neural network (ANN) which is trained using the features of the reference frame. Later, this network is employed for automatic colorization of the remained black and white frames. The reference frames of the black and white film are manually colored. Using a Gabor filter bank, texture features of all the pixels of the reference frame are extracted and used as the input feature vector of the ANN, while the output will be the color vector of the corresponding pixel. Finally, the next frames’ feature vectors are fed respectively to the trained neural network, and color vectors of those frames are the output. Applying AVI videos and using various color spaces, a series of experiments are conducted to evaluate the proposed colorization process. This method needs considerable time to provide a reasonable output, given rapidly changing scenes. Fortunately however, due to the high correlation between consecutive frames in typical video footage, the overall performance is promising regarding both visual appearance and the calculated MSE error. Apart from the application, we also aim to show the importance of the low level features in a mainly high level process, and the mapping ability of a neural network.
منابع مشابه
Film Colorization, Using Artificial Neural Networks and Laws Filters
In this study a new artificial neural network based approach to automatic or semi-automatic colorization of black and white film footages is introduced. Different features of black and white images are tried as the input of a MLP neural network which has been trained to colorize the movie using its first frame as the ground truth. Amongst the features tried, e.g. position, relaxed position, lum...
متن کاملFilm Colorization Using Texture Feature Coding and Artificial Neural Networks
In this paper a novel method for machine-based black and white films colorization is presented. The kernel of the proposed scheme is a trained artificial neural network which maps the frame pixels from a grayscale space into a color space. We employ the texture coding method to capture the line/texture characteristics of each pixel as its most significant gray scale space feature, and using tha...
متن کاملImage Colorization using Convolutional Neural Networks
For the culmination of the course CMPS 242, Machine Learning, the authors 1 present a method for image colorization using convolutional neural networks. 2 Colorization, taking a black and white image and turning into a color (RGB) image, 3 is inherently an underdetermined problem. Because of this we aim to generate 4 plausible colorizations using the technology of convolutional neural networks. 5
متن کاملAutomatic Colorization with Deep Convolutional Generative Adversarial Networks
We attempt to use DCGANs (deep convolutional generative adversarial nets) to tackle the automatic colorization of black and white photos to combat the tendency for vanilla neural nets to ”average out” the results. We construct a small feed-forward convolutional neural network as a baseline colorization system. We train the baseline model on the CIFAR-10 dataset with a per-pixel Euclidean loss f...
متن کاملAutomatic Colorization of Grayscale Images Using Generative Adversarial Networks
Automatic colorization of gray scale images poses a unique challenge in Information Retrieval. The goal of this field is to colorize images which have lost some color channels (such as the RGB channels or the AB channels in the LAB color space) while only having the brightness channel available, which is usually the case in a vast array of old photos and portraits. Having the ability to coloriz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012